WLAN Operation
Summary
This topic explain how wireless technology enables WLAN operation. Start learning CCNA 200-301 for free right now!!
Table of Contents
Video – WLAN Operation
The previous topic covered WLAN components. This topic will cover WLAN operation.
Click Play to view a video about WLAN operation.
802.11 Wireless Topology Modes
Wireless LANs can accommodate various network topologies. The 802.11 standard identifies two main wireless topology modes: Ad hoc mode and Infrastructure mode. Tethering is also a mode sometimes used to provide quick wireless access.
Click each wireless topology mode for more information.
BSS and ESS
Infrastructure mode defines two topology building blocks: A Basic Service Set (BSS) and an Extended Service Set (ESS).
Click BSS and ESS for more information.
802.11 Frame Structure
Recall that all Layer 2 frames consist of a header, payload, and Frame Check Sequence (FCS) section. The 802.11 frame format is similar to the Ethernet frame format, except that it contains more fields, as shown in the figure.
All 802.11 wireless frames contain the following fields:
- Frame Control – This identifies the type of wireless frame and contains subfields for protocol version, frame type, address type, power management, and security settings.
- Duration – This is typically used to indicate the remaining duration needed to receive the next frame transmission.
- Address1 – This usually contains the MAC address of the receiving wireless device or AP.
- Address2 – This usually contains the MAC address of the transmitting wireless device or AP.
- Address3 – This sometimes contains the MAC address of the destination, such as the router interface (default gateway) to which the AP is attached.
- Sequence Control – This contains information to control sequencing and fragmented frames.
- Address4 – This usually missing because it is used only in ad hoc mode.
- Payload – This contains the data for transmission.
- FCS – This is used for Layer 2 error control.
CSMA/CA
WLANs are half-duplex, shared media configurations. Half-duplex means that only one client can transmit or receive at any given moment. Shared media means that wireless clients can all transmit and receive on the same radio channel. This creates a problem because a wireless client cannot hear while it is sending, which makes it impossible to detect a collision.
To resolve this problem, WLANs use carrier sense multiple access with collision avoidance (CSMA/CA) as the method to determine how and when to send data on the network. A wireless client does the following:
- Listens to the channel to see if it is idle, which means that is senses no other traffic is currently on the channel. The channel is also called the carrier.
- Sends a ready to send (RTS) message to the AP to request dedicated access to the network.
- Receives a clear to send (CTS) message from the AP granting access to send.
- If the wireless client does not receive a CTS message, it waits a random amount of time before restarting the process.
- After it receives the CTS, it transmits the data.
- All transmissions are acknowledged. If a wireless client does not receive an acknowledgment, it assumes a collision occurred and restarts the process.
Wireless Client and AP Association
For wireless devices to communicate over a network, they must first associate with an AP or wireless router. An important part of the 802.11 process is discovering a WLAN and subsequently connecting to it. Wireless devices complete the following three stage process, as shown in the figure:
- Discover a wireless AP
- Authenticate with AP
- Associate with AP
In order to have a successful association, a wireless client and an AP must agree on specific parameters. Parameters must then be configured on the AP and subsequently on the client to enable the negotiation of a successful association.
- SSID -The SSID name appears in the list of available wireless networks on a client. In larger organizations that use multiple VLANs to segment traffic, each SSID is mapped to one VLAN. Depending on the network configuration, several APs on a network can share a common SSID.
- Password – This is required from the wireless client to authenticate to the AP.
- Network mode – This refers to the 802.11a/b/g/n/ac/ad WLAN standards. APs and wireless routers can operate in a Mixed mode meaning that they can simultaneously support clients connecting via multiple standards.
- Security mode – This refers to the security parameter settings, such as WEP, WPA, or WPA2. Always enable the highest security level supported.
- Channel settings – This refers to the frequency bands used to transmit wireless data. Wireless routers and APs can scan the radio frequency channels and automatically select an appropriate channel setting. The channel can also be set manually if there is interference with another AP or wireless device.
Passive and Active Discover Mode
Wireless devices must discover and connect to an AP or wireless router. Wireless clients connect to the AP using a scanning (probing) process. This process can be passive or active.
Click each mode for more information.
Ready to go! Keep visiting our networking course blog, give Like to our fanpage; and you will find more tools and concepts that will make you a networking professional.